Redis 性能测试是通过同时执行多个命令实现的。
Redis 性能测试的基本命令:redis-benchmark [option] [option value]
实例
测试存取大小为100字节的数据包的性能。
$ redis-benchmark -h 127.0.0.1 -p 6379 -q -d 100
PING_INLINE: 85910.65 requests per second PING_BULK: 123762.38 requests per second SET: 85763.29 requests per second
GET: 81699.35 requests per second
INCR: 82372.32 requests per second
LPUSH: 83472.46 requests per second
LPOP: 82712.98 requests per second
SADD: 82236.84 requests per second
SPOP: 83963.05 requests per second
LPUSH (needed to benchmark LRANGE): 82850.04 requests per second LRANGE_100 (first 100 elements): 29585.80 requests per second LRANGE_300 (first 300 elements): 9348.42 requests per second LRANGE_500 (first 450 elements): 7562.58 requests per second LRANGE_600 (first 600 elements): 6780.58 requests per second MSET (10 keys): 94428.70 requests per second
序号 | 选项 | 描述 | 默认值 |
---|---|---|---|
1 | -h | 指定服务器主机名 | 127.0.0.1 |
2 | -p | 指定服务器端口 | 6379 |
3 | -s | 指定服务器 socket | |
4 | -c | 指定并发连接数 | 50 |
5 | -n | 指定请求数 | 10000 |
6 | -d | 以字节的形式指定 SET/GET 值的数据大小 | 2 |
7 | -k | 1=keep alive 0=reconnect | 1 |
8 | -r | SET/GET/INCR 使用随机 key, SADD 使用随机值 | |
9 | -P | 通过管道传输 |
1 |
10 | -q | 强制退出 Redis。仅显示 query/sec 值 | |
11 | –CSV | 以 CSV 格式输出 | |
12 | -l | 生成循环,永久执行测试 | |
13 | -t | 仅运行以逗号分隔的测试命令列表。 | |
14 | -I | Idle 模式。仅打开 N 个 idle 连接并等待。 |
100个并发连接,100000个请求,检测host为localhost 端口为6379的Redis服务器性能
$ redis-benchmark -h 127.0.0.1 -p 6379 -c 100 -n 100000
====== PING_INLINE ======
100000 requests completed in 0.83 seconds 100 parallel clients
3 bytes payload
keep alive: 1
98.95% <= 1 milliseconds
100.00% <= 1 milliseconds
120192.30 requests per second
====== PING_BULK ======
100000 requests
completed in 0.82 seconds
100 parallel clients
3 bytes payload
keep alive: 1
100.00% <= 0 milliseconds
121506.68 requests per second
====== SET ======
100000 requests
completed in 0.82 seconds
100 parallel clients
3 bytes payload
keep alive: 1
99.80% <= 1 milliseconds
100.00% <= 1 milliseconds
122249.38 requests per second
====== GET ======
100000 requests
completed in 0.81 seconds
100 parallel clients
3 bytes payload
keep alive: 1
99.79% <= 1 milliseconds
100.00% <= 1 milliseconds
122699.39 requests per second
====== INCR ======
100000 requests
completed in 0.81 seconds
100 parallel clients
3 bytes payload
keep alive: 1
99.95% <= 1 milliseconds
100.00% <= 1 milliseconds
124223.60 requests per second
====== LPUSH ======
100000 requests
completed in 0.82 seconds
100 parallel clients
3 bytes payload
keep alive: 1
99.82% <= 1 milliseconds
100.00% <= 1 milliseconds
122100.12 requests per second
====== LPOP ======
100000 requests
completed in 1.30 seconds
100 parallel clients
3 bytes payload
keep alive: 1
99.93% <= 1 milliseconds
100.00% <= 1 milliseconds
77160.49 requests per second
====== SADD ======
100000 requests
completed in 0.88 seconds
100 parallel clients
3 bytes payload
keep alive: 1
99.81% <= 1 milliseconds
99.97% <= 2 milliseconds
100.00% <= 2 milliseconds
113895.21 requests per second
====== SPOP ======
100000 requests completed in 0.82 seconds 100 parallel clients
3 bytes payload
keep alive: 1
99.78% <= 1 milliseconds
100.00% <= 1 milliseconds
121802.68 requests per second
====== LPUSH (needed to benchmark LRANGE) ====== 100000 requests
completed in 0.81 seconds
100 parallel clients
3 bytes payload
keep alive: 1
99.09% <= 1 milliseconds
99.94% <= 2 milliseconds
100.00% <= 2 milliseconds
122850.12 requests per second
====== LRANGE_100 (first 100 elements) ======
100000 requests
completed in 2.13 seconds
100 parallel clients
3 bytes payload
keep alive: 1
28.64% <= 1 milliseconds
99.65% <= 2 milliseconds
99.97% <= 3 milliseconds
100.00% <= 3 milliseconds
47036.69 requests per second
====== LRANGE_300 (first 300 elements) ======
100000 requests completed
in 5.46 seconds 100 parallel clients
3 bytes payload keep alive: 1
0.01% <= 1 milliseconds
0.50% <= 2 milliseconds
82.99% <= 3 milliseconds
99.11% <= 4 milliseconds
99.75% <= 5 milliseconds
99.95% <= 6 milliseconds
100.00% <= 6 milliseconds
18325.09 requests per second
====== LRANGE_500 (first 450 elements) ======
100000 requests
completed in 7.94 seconds
100 parallel clients
3 bytes payload
keep alive: 1
0.01% <= 1 milliseconds
0.10% <= 2 milliseconds
3.03% <= 3 milliseconds
58.57% <= 4 milliseconds
93.27% <= 5 milliseconds
99.03% <= 6 milliseconds
99.53% <= 7 milliseconds
99.72% <= 8 milliseconds
99.77% <= 9 milliseconds
99.82% <= 10 milliseconds
99.85% <= 11 milliseconds
99.88% <= 12 milliseconds
99.94% <= 13 milliseconds
99.97% <= 14 milliseconds
99.98% <= 15 milliseconds
99.99% <= 16 milliseconds
100.00% <= 17 milliseconds
100.00% <= 17 milliseconds
12600.81 requests per second
====== LRANGE_600 (first 600 elements) ======
100000 requests
completed in 10.34 seconds
100 parallel clients
3 bytes payload
keep alive: 1
0.00% <= 1 milliseconds
0.01% <= 2 milliseconds
0.10% <= 3 milliseconds
6.40% <= 4 milliseconds
45.93% <= 5 milliseconds
84.86% <= 6 milliseconds
95.54% <= 7 milliseconds
99.47% <= 8 milliseconds
99.81% <= 9 milliseconds
99.94% <= 10 milliseconds
99.99% <= 11 milliseconds
100.00% <= 11 milliseconds
9673.99 requests per second
====== MSET (10 keys) ======
100000 requests
completed in 1.01 seconds
100 parallel clients
3 bytes payload
keep alive: 1
84.16% <= 1 milliseconds
99.59% <= 2 milliseconds
99.85% <= 3 milliseconds
100.00% <= 3 milliseconds
99206.34 requests per second
下一节:在很多互联网产品应用中,有些场景需要加锁处理,比如:秒杀,全局递增ID,楼层生成等等。大部分的解决方案是基于DB实现的,Redis为单进程单线程模式,采用队列模式将并发访问变成串行访问,且多客户端对redis的连接并不存在竞争关系。其次Redis提供一些命令SETNX,GETSET,可以方便实现分布式锁机制。