1
package 动态规划.q53_最大子序和.f1;
/**
* 贪心法 遍历一次 o(n)
*/
public class Solution {
public int maxSubArray(int[] nums) {
if (nums.length == 1) {
return nums[0];
}
int sum = nums[0];
int temp = sum;
for (int i = 1; i < nums.length; i++) {
temp = temp + nums[i];
if (temp >= sum) {
sum = temp;
} else if (temp < 0) {
temp = 0;
}
if (nums[i] > sum) {
temp = nums[i];
sum = nums[i];
}
}
return sum;
}
public static void main(String[] args) {
System.out.println(new Solution().maxSubArray(new int[]{-1, 1, 2, 1}));
}
}
2
package 动态规划.q53_最大子序和.f2;
/**
* 动态规划 dp[i]表示以nums[i]结尾的最大子序和 o(n)
*/
public class Solution {
public int maxSubArray(int[] nums) {
int[] dp = new int[nums.length];
dp[0] = nums[0];
int rs = dp[0];
for (int i = 1; i < nums.length; i++) {
int temp = dp[i - 1] + nums[i];
dp[i] = Math.max(nums[i],temp);
rs = Math.max(rs, dp[i]);
}
return rs;
}
public static void main(String[] args) {
System.out.println(new Solution().maxSubArray(new int[]{-2}));
}
}