Lambda表达式

让我们从最简单的例子开始,来学习如何对一个string列表进行排序。我们首先使用Java 8之前的方法来实现:

List<String> names = Arrays.asList("peter", "anna", "mike", "xenia");
Collections.sort(names, new Comparator<String>() {
    @Override
    public int compare(String a, String b) {
        return b.compareTo(a);
    }
});

静态工具方法Collections.sort接受一个list,和一个Comparator接口作为输入参数,Comparator的实现类可以对输入的list中的元素进行比较。通常情况下,你可以直接用创建匿名Comparator对象,并把它作为参数传递给sort方法。

除了创建匿名对象以外,Java 8 还提供了一种更简洁的方式,Lambda表达式。

Collections.sort(names, (String a, String b) -> {
    return b.compareTo(a);
});

你可以看到,这段代码就比之前的更加简短和易读。但是,它还可以更加简短:

Collections.sort(names, (String a, String b) -> b.compareTo(a));

只要一行代码,包含了方法体。你甚至可以连大括号对{}和return关键字都省略不要。不过这还不是最短的写法:

Collections.sort(names, (a, b) -> b.compareTo(a));

Java编译器能够自动识别参数的类型,所以你就可以省略掉类型不写。让我们再深入地研究一下lambda表达式的威力吧。

函数式接口

Lambda表达式如何匹配Java的类型系统?每一个lambda都能够通过一个特定的接口,与一个给定的类型进行匹配。一个所谓的函数式接口必须要有且仅有一个抽象方法声明。每个与之对应的lambda表达式必须要与抽象方法的声明相匹配。由于默认方法不是抽象的,因此你可以在你的函数式接口里任意添加默认方法。

任意只包含一个抽象方法接口,我们都可以用来做成lambda表达式。为了让你定义的接口满足要求,你应当在接口前加上@FunctionalInterface 标注。编译器会注意到这个标注,如果你的接口中定义了第二个抽象方法的话,编译器会抛出异常。

举例:

@FunctionalInterface
interface Converter<F, T> {
    T convert(F from);
}
Converter<String, Integer> converter = (from) -> Integer.valueOf(from);
Integer converted = converter.convert("123");
System.out.println(converted);    // 123

注意,如果你不写@FunctionalInterface 标注,程序也是正确的。

方法和构造函数引用

上面的代码实例可以通过静态方法引用,使之更加简洁:

Converter<String, Integer> converter = Integer::valueOf;
Integer converted = converter.convert("123");
System.out.println(converted);   // 123

Java 8 允许你通过::关键字获取方法或者构造函数的的引用。上面的例子就演示了如何引用一个静态方法。而且,我们还可以对一个对象的方法进行引用:

class Something {
    String startsWith(String s) {
        return String.valueOf(s.charAt(0));
    }
}
Something something = new Something();
Converter<String, String> converter = something::startsWith;
String converted = converter.convert("Java");
System.out.println(converted);    // "J"

让我们看看如何使用::关键字引用构造函数。首先我们定义一个示例bean,包含不同的构造方法

class Person {
    String firstName;
    String lastName;
    Person() {}
    Person(String firstName, String lastName) {
        this.firstName = firstName;
        this.lastName = lastName;
    }
}

接下来,我们定义一个person工厂接口,用来创建新的person对象:

interface PersonFactory<P extends Person> {
    P create(String firstName, String lastName);
}

然后我们通过构造函数引用来把所有东西拼到一起,而不是像以前一样,通过手动实现一个工厂来这么做。

PersonFactory<Person> personFactory = Person::new;
Person person = personFactory.create("Peter", "Parker");

我们通过Person::new来创建一个Person类构造函数的引用。Java编译器会自动地选择合适的构造函数来匹配PersonFactory.create函数的签名,并选择正确的构造函数形式。

Lambda的范围

对于lambdab表达式外部的变量,其访问权限的粒度与匿名对象的方式非常类似。你能够访问局部对应的外部区域的局部final变量,以及成员变量和静态变量。

访问局部变量

我们可以访问lambda表达式外部的final局部变量

final int num = 1;
Converter<Integer, String> stringConverter =
        (from) -> String.valueOf(from + num);
stringConverter.convert(2);     // 3

但是与匿名对象不同的是,变量num并不需要一定是final。下面的代码依然是合法的:

int num = 1;
Converter<Integer, String> stringConverter =
        (from) -> String.valueOf(from + num);
stringConverter.convert(2);     // 3

然而,num在编译的时候被隐式地当做final变量来处理。下面的代码就不合法:

int num = 1;
Converter<Integer, String> stringConverter =
        (from) -> String.valueOf(from + num);
num = 3;

在lambda表达式内部企图改变num的值也是不允许的。

访问成员变量和静态变量

与局部变量不同,我们在lambda表达式的内部能获取到对成员变量或静态变量的读写权。这种访问行为在匿名对象里是非常典型的。

class Lambda4 {
    static int outerStaticNum;
    int outerNum;
    void testScopes() {
        Converter<Integer, String> stringConverter1 = (from) -> {
            outerNum = 23;
            return String.valueOf(from);
        };
        Converter<Integer, String> stringConverter2 = (from) -> {
            outerStaticNum = 72;
            return String.valueOf(from);
        };
    }
}

访问默认接口方法

还记得第一节里面formula的那个例子么? 接口Formula定义了一个默认的方法sqrt,该方法能够访问formula所有的对象实例,包括匿名对象。这个对lambda表达式来讲则无效。

默认方法无法在lambda表达式内部被访问。因此下面的代码是无法通过编译的:

Formula formula = (a) -> sqrt( a * 100);