并发API支持多种显式的锁,它们由Lock
接口规定,用于代替synchronized
的隐式锁。锁对细粒度的控制支持多种方法,因此它们比隐式的监视器具有更大的开销。
锁的多个实现在标准JDK中提供,它们会在下面的章节中展示。
ReentrantLock
ReentrantLock
类是互斥锁,与通过synchronized
访问的隐式监视器具有相同行为,但是具有扩展功能。就像它的名称一样,这个锁实现了重入特性,就像隐式监视器一样。
让我们看看使用ReentrantLock
之后的上面的例子。
ReentrantLock lock = new ReentrantLock();
int count = 0;
void increment() {
lock.lock();
try {
count++;
} finally {
lock.unlock();
}
}
锁可以通过lock()
来获取,通过unlock()
来释放。把你的代码包装在try-finally
代码块中来确保异常情况下的解锁非常重要。这个方法是线程安全的,就像同步副本那样。如果另一个线程已经拿到锁了,再次调用lock()
会阻塞当前线程,直到锁被释放。在任意给定的时间内,只有一个线程可以拿到锁。
锁对细粒度的控制支持多种方法,就像下面的例子那样:
executor.submit(() -> {
lock.lock();
try {
sleep(1);
} finally {
lock.unlock();
}
});
executor.submit(() -> {
System.out.println("Locked: " + lock.isLocked());
System.out.println("Held by me: " + lock.isHeldByCurrentThread());
boolean locked = lock.tryLock();
System.out.println("Lock acquired: " + locked);
});
stop(executor);
在第一个任务拿到锁的一秒之后,第二个任务获得了锁的当前状态的不同信息。
Locked: true
Held by me: false
Lock acquired: false
tryLock()
方法是lock()
方法的替代,它尝试拿锁而不阻塞当前线程。在访问任何共享可变变量之前,必须使用布尔值结果来检查锁是否已经被获取。
ReadWriteLock
ReadWriteLock
接口规定了锁的另一种类型,包含用于读写访问的一对锁。读写锁的理念是,只要没有任何线程写入变量,并发读取可变变量通常是安全的。所以读锁可以同时被多个线程持有,只要没有线程持有写锁。这样可以提升性能和吞吐量,因为读取比写入更加频繁。
ExecutorService executor = Executors.newFixedThreadPool(2);
Map<String, String> map = new HashMap<>();
ReadWriteLock lock = new ReentrantReadWriteLock();
executor.submit(() -> {
lock.writeLock().lock();
try {
sleep(1);
map.put("foo", "bar");
} finally {
lock.writeLock().unlock();
}
});
上面的例子在暂停一秒之后,首先获取写锁来向映射添加新的值。在这个任务完成之前,两个其它的任务被启动,尝试读取映射中的元素,并暂停一秒:
Runnable readTask = () -> {
lock.readLock().lock();
try {
System.out.println(map.get("foo"));
sleep(1);
} finally {
lock.readLock().unlock();
}
};
executor.submit(readTask);
executor.submit(readTask);
stop(executor);
当你执行这一代码示例时,你会注意到两个读任务需要等待写任务完成。在释放了写锁之后,两个读任务会同时执行,并同时打印结果。它们不需要相互等待完成,因为读锁可以安全同步获取,只要没有其它线程获取了写锁。
StampedLock
Java 8 自带了一种新的锁,叫做StampedLock
,它同样支持读写锁,就像上面的例子那样。与ReadWriteLock
不同的是,StampedLock
的锁方法会返回表示为long
的标记。你可以使用这些标记来释放锁,或者检查锁是否有效。此外,StampedLock
支持另一种叫做乐观锁(optimistic locking)的模式。
让我们使用StampedLock
代替ReadWriteLock
重写上面的例子:
ExecutorService executor = Executors.newFixedThreadPool(2);
Map<String, String> map = new HashMap<>();
StampedLock lock = new StampedLock();
executor.submit(() -> {
long stamp = lock.writeLock();
try {
sleep(1);
map.put("foo", "bar");
} finally {
lock.unlockWrite(stamp);
}
});
Runnable readTask = () -> {
long stamp = lock.readLock();
try {
System.out.println(map.get("foo"));
sleep(1);
} finally {
lock.unlockRead(stamp);
}
};
executor.submit(readTask);
executor.submit(readTask);
stop(executor);
通过readLock()
或 writeLock()
来获取读锁或写锁会返回一个标记,它可以在稍后用于在finally
块中解锁。要记住StampedLock
并没有实现重入特性。每次调用加锁都会返回一个新的标记,并且在没有可用的锁时阻塞,即使相同线程已经拿锁了。所以你需要额外注意不要出现死锁。
就像前面的ReadWriteLock
例子那样,两个读任务都需要等待写锁释放。之后两个读任务同时向控制台打印信息,因为多个读操作不会相互阻塞,只要没有线程拿到写锁。
下面的例子展示了乐观锁:
ExecutorService executor = Executors.newFixedThreadPool(2);
StampedLock lock = new StampedLock();
executor.submit(() -> {
long stamp = lock.tryOptimisticRead();
try {
System.out.println("Optimistic Lock Valid: " + lock.validate(stamp));
sleep(1);
System.out.println("Optimistic Lock Valid: " + lock.validate(stamp));
sleep(2);
System.out.println("Optimistic Lock Valid: " + lock.validate(stamp));
} finally {
lock.unlock(stamp);
}
});
executor.submit(() -> {
long stamp = lock.writeLock();
try {
System.out.println("Write Lock acquired");
sleep(2);
} finally {
lock.unlock(stamp);
System.out.println("Write done");
}
});
stop(executor);
乐观的读锁通过调用tryOptimisticRead()
获取,它总是返回一个标记而不阻塞当前线程,无论锁是否真正可用。如果已经有写锁被拿到,返回的标记等于0。你需要总是通过lock.validate(stamp)
检查标记是否有效。
执行上面的代码会产生以下输出:
Optimistic Lock Valid: true
Write Lock acquired
Optimistic Lock Valid: false
Write done
Optimistic Lock Valid: false
乐观锁在刚刚拿到锁之后是有效的。和普通的读锁不同的是,乐观锁不阻止其他线程同时获取写锁。在第一个线程暂停一秒之后,第二个线程拿到写锁而无需等待乐观的读锁被释放。此时,乐观的读锁就不再有效了。甚至当写锁释放时,乐观的读锁还处于无效状态。
所以在使用乐观锁时,你需要每次在访问任何共享可变变量之后都要检查锁,来确保读锁仍然有效。
有时,将读锁转换为写锁而不用再次解锁和加锁十分实用。StampedLock
为这种目的提供了tryConvertToWriteLock()
方法,就像下面那样:
ExecutorService executor = Executors.newFixedThreadPool(2);
StampedLock lock = new StampedLock();
executor.submit(() -> {
long stamp = lock.readLock();
try {
if (count == 0) {
stamp = lock.tryConvertToWriteLock(stamp);
if (stamp == 0L) {
System.out.println("Could not convert to write lock");
stamp = lock.writeLock();
}
count = 23;
}
System.out.println(count);
} finally {
lock.unlock(stamp);
}
});
stop(executor);
第一个任务获取读锁,并向控制台打印count
字段的当前值。但是如果当前值是零,我们希望将其赋值为23
。我们首先需要将读锁转换为写锁,来避免打破其它线程潜在的并发访问。tryConvertToWriteLock()
的调用不会阻塞,但是可能会返回为零的标记,表示当前没有可用的写锁。这种情况下,我们调用writeLock()
来阻塞当前线程,直到有可用的写锁。
下一节:除了锁之外,并发API也支持计数的信号量。不过锁通常用于变量或资源的互斥访问,信号量可以维护整体的准入许可。这在一些不同场景下,例如你需要限制你程序某个部分的并发访问总数时非常实用。