本文介绍多重查询字符串和单一查询字符串。
多重查询字符串
在明确的字段中的词查询是最容易处理的多字段查询。如果我们知道War and Peace是标题,Leo Tolstoy是作者,可以很容易的用match查询表达每个条件,并且用布尔查询组合起来:
GET /_search
{
"query": {
"bool": {
"should": [
{ "match": { "title": "War and Peace" }},
{ "match": { "author": "Leo Tolstoy" }}
]
}
}
}
布尔查询采用"匹配越多越好(More-matches-is-better)"的方法,所以每个match子句的得分会被加起来变成最后的每个文档的得分。匹配两个子句的文档的得分会比只匹配了一个文档的得分高。
当然,没有限制你只能使用match子句:布尔查询可以包装任何其他的查询类型,包含其他的布尔查询,我们可以添加一个子句来指定我们更喜欢看被哪个特殊的翻译者翻译的那版书:
GET /_search
{
"query": {
"bool": {
"should": [
{ "match": { "title": "War and Peace" }},
{ "match": { "author": "Leo Tolstoy" }},
{ "bool": {
"should": [
{ "match": { "translator": "Constance Garnett" }},
{ "match": { "translator": "Louise Maude" }}
]
}}
]
}
}
}
为什么我们把翻译者的子句放在一个独立的布尔查询中?所有的匹配查询都是should子句,所以为什么不把翻译者的子句放在和title以及作者的同一级?
答案就在如何计算得分中。布尔查询执行每个匹配查询,把他们的得分加在一起,然后乘以匹配子句的数量,并且除以子句的总数。每个同级的子句权重是相同的。在前面的查询中,包含翻译者的布尔查询占用总得分的三分之一。如果我们把翻译者的子句放在和标题与作者同级的目录中,我们会把标题与作者的作用减少的四分之一。
设置子句优先级
在先前的查询中我们可能不需要使每个子句都占用三分之一的权重。我们可能对标题以及作者比翻译者更感兴趣。我们需要调整查询来使得标题和作者的子句相关性更重要。
最简单的方法是使用boost参数。为了提高标题和作者字段的权重,我们给boost参数提供一个比1高的值:
GET /_search
{
"query": {
"bool": {
"should": [
{ "match": { <1>
"title": {
"query": "War and Peace",
"boost": 2
}}},
{ "match": { <1>
"author": {
"query": "Leo Tolstoy",
"boost": 2
}}},
{ "bool": { <2>
"should": [
{ "match": { "translator": "Constance Garnett" }},
{ "match": { "translator": "Louise Maude" }}
]
}}
]
}
}
}
- <1> 标题和作者的boost值为2。
- <2> 嵌套的布尔查询的boost值为默认的1。
通过试错(Trial and Error)的方式可以确定"最佳"的boost值:设置一个boost值,执行测试查询,重复这个过程。一个合理boost值的范围在1和10之间,也可能是15。比它更高的值的影响不会起到很大的作用,因为分值会被规范化(Normalized)。
单一查询字符串(Single Query String)
bool查询是多字段查询的中流砥柱。在很多场合下它都能很好地工作,特别是当你能够将不同的查询字符串映射到不同的字段时。
问题在于,现在的用户期望能够在一个地方输入所有的搜索词条,然后应用能够知道如何为他们得到正确的结果。所以当我们把含有多个字段的搜索表单称为高级搜索(Advanced Search)时,是有一些讽刺意味的。高级搜索虽然对用户而言会显得更"高级",但是实际上它的实现方式更简单。
对于多词,多字段查询并没有一种万能(one-size-fits-all)的方法。要得到最佳的结果,你需要了解你的数据以及如何使用恰当的工具。
了解你的数据
当用户的唯一输入就是一个查询字符串时,你会经常碰到以下三种情况:
1.最佳字段(Best fields)::
当搜索代表某些概念的单词时,例如"brown fox",几个单词合在一起表达出来的意思比单独的单词更多。类似title和body的字段,尽管它们是相关联的,但是也是互相竞争着的。文档在相同的字段中应该有尽可能多的单词(译注:搜索的目标单词),文档的分数应该来自拥有最佳匹配的字段。
2.多数字段(Most fields)::
一个用来调优相关度的常用技术是将相同的数据索引到多个字段中,每个字段拥有自己的分析链(Analysis Chain)。
主要字段会含有单词的词干部分,同义词和消除了变音符号的单词。它用来尽可能多地匹配文档。
相同的文本可以被索引到其它的字段中来提供更加精确的匹配。一个字段或许会包含未被提取成词干的单词,另一个字段是包含了变音符号的单词,第三个字段则使用shingle来提供关于单词邻近度(Word Proximity)的信息。
以上这些额外的字段扮演者signal的角色,用来增加每个匹配的文档的相关度分值。越多的字段被匹配则意味着文档的相关度越高。
3.跨字段(Cross fields)::
对于一些实体,标识信息会在多个字段中出现,每个字段中只含有一部分信息:
- Person:
first_name
和last_name
- Book:
title
,author
, 和description
- Address:
street
,city
,country
, 和postcode
此时,我们希望在任意字段中找到尽可能多的单词。我们需要在多个字段中进行查询,就好像这些字段是一个字段那样。
以上这些都是多词,多字段查询,但是每种都需要使用不同的策略。我们会在本章剩下的部分解释每种策略。