27. 快速排序

快速排序是一种分治策略的排序算法,是由英国计算机科学家 Tony Hoare 发明的, 该算法被发布在 1961 年的 Communications of the ACM 国际计算机学会月刊。

注: ACM = Association for Computing Machinery,国际计算机学会,世界性的计算机从业员专业组织,创立于1947年,是世界上第一个科学性及教育性计算机学会。

快速排序是对冒泡排序的一种改进,也属于交换类的排序算法。

一、算法介绍

快速排序通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。步骤如下:

  1. 先从数列中取出一个数作为基准数。一般取第一个数。
  2. 分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边。
  3. 再对左右区间重复第二步,直到各区间只有一个数。

举一个例子:5 9 1 6 8 14 6 49 25 4 6 3

一般取第一个数 5 作为基准,从它左边和最后一个数使用[]进行标志,
如果左边的数比基准数大,那么该数要往右边扔,也就是两个[]数交换,这样大于它的数就在右边了,然后右边[]数左移,否则左边[]数右移。
5 [9] 1 6 8 14 6 49 25 4 6 [3]  因为 9 > 5,两个[]交换位置后,右边[]左移
5 [3] 1 6 8 14 6 49 25 4 [6] 9  因为 3 !> 5,两个[]不需要交换,左边[]右移
5 3 [1] 6 8 14 6 49 25 4 [6] 9  因为 1 !> 5,两个[]不需要交换,左边[]右移
5 3 1 [6] 8 14 6 49 25 4 [6] 9  因为 6 > 5,两个[]交换位置后,右边[]左移
5 3 1 [6] 8 14 6 49 25 [4] 6 9  因为 6 > 5,两个[]交换位置后,右边[]左移
5 3 1 [4] 8 14 6 49 [25] 6 6 9  因为 4 !> 5,两个[]不需要交换,左边[]右移
5 3 1 4 [8] 14 6 49 [25] 6 6 9  因为 8 > 5,两个[]交换位置后,右边[]左移
5 3 1 4 [25] 14 6 [49] 8 6 6 9  因为 25 > 5,两个[]交换位置后,右边[]左移
5 3 1 4 [49] 14 [6] 25 8 6 6 9  因为 49 > 5,两个[]交换位置后,右边[]左移
5 3 1 4 [6] [14] 49 25 8 6 6 9  因为 6 > 5,两个[]交换位置后,右边[]左移
5 3 1 4 [14] 6 49 25 8 6 6 9  两个[]已经汇总,因为 14 > 5,所以 5 和[]之前的数 4 交换位置
第一轮切分结果:4 3 1 5 14 6 49 25 8 6 6 9  
现在第一轮快速排序已经将数列分成两个部分:
4 3 1 和 14 6 49 25 8 6 6 9
左边的数列都小于 5,右边的数列都大于 5。
使用递归分别对两个数列进行快速排序。

快速排序主要靠基准数进行切分,将数列分成两部分,一部分比基准数都小,一部分比基准数都大。

在最好情况下,每一轮都能平均切分,这样遍历元素只要 n/2 次就可以把数列分成两部分,每一轮的时间复杂度都是:O(n)。因为问题规模每次被折半,折半的数列继续递归进行切分,也就是总的时间复杂度计算公式为: T(n) = 2*T(n/2) + O(n)。按照主定理公式计算,我们可以知道时间复杂度为:O(nlogn),当然我们可以来具体计算一下:

我们来分析最好情况,每次切分遍历元素的次数为 n/2
T(n) = 2*T(n/2) + n/2
T(n/2) = 2*T(n/4) + n/4
T(n/4) = 2*T(n/8) + n/8
T(n/8) = 2*T(n/16) + n/16
...
T(4) = 2*T(2) + 4
T(2) = 2*T(1) + 2
T(1) = 1
进行合并也就是:
T(n) = 2*T(n/2) + n/2
     = 2^2*T(n/4)+ n/2 + n/2
     = 2^3*T(n/8) + n/2 + n/2 + n/2
     = 2^4*T(n/16) + n/2 + n/2 + n/2 + n/2
     = ...
     = 2^logn*T(1) + logn * n/2
     = 2^logn + 1/2*nlogn
     = n + 1/2*nlogn
因为当问题规模 n 趋于无穷大时 nlogn 比 n 大,所以 T(n) = O(nlogn)。
最好时间复杂度为:O(nlogn)。

最差的情况下,每次都不能平均地切分,每次切分都因为基准数是最大的或者最小的,不能分成两个数列,这样时间复杂度变为了 T(n) = T(n-1) + O(n),按照主定理计算可以知道时间复杂度为:O(n^2),我们可以来实际计算一下:

我们来分析最差情况,每次切分遍历元素的次数为 n
T(n) = T(n-1) + n
     = T(n-2) + n-1 + n
     = T(n-3) + n-2 + n-1 + n
     = ...
     = T(1) + 2 +3 + ... + n-2 + n-1 + n
     = O(n^2)
最差时间复杂度为:O(n^2)。

根据熵的概念,数量越大,随机性越高,越自发无序,所以待排序数据规模非常大时,出现最差情况的情形较少。在综合情况下,快速排序的平均时间复杂度为:O(nlogn)。对比之前介绍的排序算法,快速排序比那些动不动就是平方级别的初级排序算法更佳。

切分的结果极大地影响快速排序的性能,为了避免切分不均匀情况的发生,有几种方法改进:

  1. 每次进行快速排序切分时,先将数列随机打乱,再进行切分,这样随机加了个震荡,减少不均匀的情况。当然,也可以随机选择一个基准数,而不是选第一个数。
  2. 每次取数列头部,中部,尾部三个数,取三个数的中位数为基准数进行切分。

方法 1 相对好,而方法 2 引入了额外的比较操作,一般情况下我们可以随机选择一个基准数。

快速排序使用原地排序,存储空间复杂度为:O(1)。而因为递归栈的影响,递归的程序栈开辟的层数范围在 logn~n,所以递归栈的空间复杂度为:O(logn)~log(n),最坏为:log(n),当元素较多时,程序栈可能溢出。通过改进算法,使用伪尾递归进行优化,递归栈的空间复杂度可以减小到 O(logn),可以见下面算法优化。

快速排序是不稳定的,因为切分过程中进行了交换,相同值的元素可能发生位置变化。

二、算法实现

package main
import "fmt"
// 普通快速排序
func QuickSort(array []int, begin, end int) {
    if begin < end {
        // 进行切分
        loc := partition(array, begin, end)
        // 对左部分进行快排
        QuickSort(array, begin, loc-1)
        // 对右部分进行快排
        QuickSort(array, loc+1, end)
    }
}
// 切分函数,并返回切分元素的下标
func partition(array []int, begin, end int) int {
    i := begin + 1 // 将array[begin]作为基准数,因此从array[begin+1]开始与基准数比较!
    j := end       // array[end]是数组的最后一位
    // 没重合之前
    for i < j {
        if array[i] > array[begin] {
            array[i], array[j] = array[j], array[i] // 交换
            j--
        } else {
            i++
        }
    }
    /* 跳出while循环后,i = j。
     * 此时数组被分割成两个部分  -->  array[begin+1] ~ array[i-1] < array[begin]
     *                        -->  array[i+1] ~ array[end] > array[begin]
     * 这个时候将数组array分成两个部分,再将array[i]与array[begin]进行比较,决定array[i]的位置。
     * 最后将array[i]与array[begin]交换,进行两个分割部分的排序!以此类推,直到最后i = j不满足条件就退出!
     */
    if array[i] >= array[begin] { // 这里必须要取等“>=”,否则数组元素由相同的值组成时,会出现错误!
        i--
    }
    array[begin], array[i] = array[i], array[begin]
    return i
}
func main() {
    list := []int{5}
    QuickSort(list, 0, len(list)-1)
    fmt.Println(list)
    list1 := []int{5, 9}
    QuickSort(list1, 0, len(list1)-1)
    fmt.Println(list1)
    list2 := []int{5, 9, 1}
    QuickSort(list2, 0, len(list2)-1)
    fmt.Println(list2)
    list3 := []int{5, 9, 1, 6, 8, 14, 6, 49, 25, 4, 6, 3}
    QuickSort(list3, 0, len(list3)-1)
    fmt.Println(list3)
}

输出:

[5]
[5 9]
[1 5 9]
[1 3 4 5 6 6 6 8 9 14 25 49]

示例图:

快速排序,每一次切分都维护两个下标,进行推进,最后将数列分成两部分。

三、算法改进

快速排序可以继续进行算法改进。

  1. 在小规模数组的情况下,直接插入排序的效率最好,当快速排序递归部分进入小数组范围,可以切换成直接插入排序。
  2. 排序数列可能存在大量重复值,使用三向切分快速排序,将数组分成三部分,大于基准数,等于基准数,小于基准数,这个时候需要维护三个下标。
  3. 使用伪尾递归减少程序栈空间占用,使得栈空间复杂度从 O(logn)~log(n) 变为:O(logn)

3.1 改进:小规模数组使用直接插入排序

func QuickSort1(array []int, begin, end int) {
    if begin < end {
        // 当数组小于 4 时使用直接插入排序
        if end-begin <= 4 {
            InsertSort(array[begin : end+1])
            return
        }
        // 进行切分
        loc := partition(array, begin, end)
        // 对左部分进行快排
        QuickSort1(array, begin, loc-1)
        // 对右部分进行快排
        QuickSort1(array, loc+1, end)
    }
}

直接插入排序在小规模数组下效率极好,我们只需将 end-begin <= 4 的递归部分换成直接插入排序,这部分表示小数组排序。

3.2 改进:三向切分

package main
import "fmt"
// 三切分的快速排序
func QuickSort2(array []int, begin, end int) {
    if begin < end {
        // 三向切分函数,返回左边和右边下标
        lt, gt := partition3(array, begin, end)
        // 从lt到gt的部分是三切分的中间数列
        // 左边三向快排
        QuickSort2(array, begin, lt-1)
        // 右边三向快排
        QuickSort2(array, gt+1, end)
    }
}
// 切分函数,并返回切分元素的下标
func partition3(array []int, begin, end int) (int, int) {
    lt := begin       // 左下标从第一位开始
    gt := end         // 右下标是数组的最后一位
    i := begin + 1    // 中间下标,从第二位开始
    v := array[begin] // 基准数
    // 以中间坐标为准
    for i <= gt {
        if array[i] > v { // 大于基准数,那么交换,右指针左移
            array[i], array[gt] = array[gt], array[i]
            gt--
        } else if array[i] < v { // 小于基准数,那么交换,左指针右移
            array[i], array[lt] = array[lt], array[i]
            lt++
            i++
        } else {
            i++
        }
    }
    return lt, gt
}

演示:

数列:4 8 2 4 4 4 7 9,基准数为 4
[4] [8] 2 4 4 4 7 [9]  从中间[]开始:8 > 4,中右[]进行交换,右边[]左移
[4] [9] 2 4 4 4 [7] 8  从中间[]开始:9 > 4,中右[]进行交换,右边[]左移
[4] [7] 2 4 4 [4] 9 8  从中间[]开始:7 > 4,中右[]进行交换,右边[]左移
[4] [4] 2 4 [4] 7 9 8  从中间[]开始:4 == 4,不需要交换,中间[]右移
[4] 4 [2] 4 [4] 7 9 8  从中间[]开始:2 < 4,中左[]需要交换,中间和左边[]右移
2 [4] 4 [4] [4] 7 9 8  从中间[]开始:4 == 4,不需要交换,中间[]右移
2 [4] 4 4 [[4]] 7 9 8  从中间[]开始:4 == 4,不需要交换,中间[]右移,因为已经重叠了
第一轮结果:2 4 4 4 4 7 9 8
分成三个数列:
2
4 4 4 4 (元素相同的会聚集在中间数列)
7 9 8
接着对第一个和最后一个数列进行递归即可。

示例图:

三切分,把小于基准数的扔到左边,大于基准数的扔到右边,相同的元素会进行聚集。

如果存在大量重复元素,排序速度将极大提高,将会是线性时间,因为相同的元素将会聚集在中间,这些元素不再进入下一个递归迭代。

三向切分主要来自荷兰国旗三色问题,该问题由 Dijkstra 提出。

假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳子上进行这个动作,而且一次只能调换两个旗子。

可以看到,上面的解答相当于使用三向切分一次,只要我们将白色旗子的值设置为 100,蓝色的旗子值设置为 0,红色旗子值设置为 200,以 100 作为基准数,第一次三向切分后三种颜色的旗就排好了,因为 蓝(0)白(100)红(200)

注:艾兹格·W·迪科斯彻(Edsger Wybe Dijkstra,1930年5月11日~2002年8月6日),荷兰人,计算机科学家,曾获图灵奖。

3.3 改进:伪尾递归优化

// 伪尾递归快速排序
func QuickSort3(array []int, begin, end int) {
    for begin < end {
        // 进行切分
        loc := partition(array, begin, end)
        // 那边元素少先排哪边
        if loc-begin < end-loc {
            // 先排左边
            QuickSort3(array, begin, loc-1)
            begin = loc + 1
        } else {
            // 先排右边
            QuickSort3(array, loc+1, end)
            end = loc - 1
        }
    }
}

很多人以为这样子是尾递归。其实这样的快排写法是伪装的尾递归,不是真正的尾递归,因为有 for 循环,不是直接 return QuickSort,递归还是不断地压栈,栈的层次仍然不断地增长。

但是,因为先让规模小的部分排序,栈的深度大大减少,程序栈最深不会超过 logn 层,这样堆栈最坏空间复杂度从 O(n) 降为 O(logn)

这种优化也是一种很好的优化,因为栈的层数减少了,对于排序十亿个整数,也只要:log(100 0000 0000)=29.897,占用的堆栈层数最多 30 层,比不进行优化,可能出现的 O(n) 常数层好很多。

四、补充:非递归写法

非递归写法仅仅是将之前的递归栈转化为自己维持的手工栈。

// 非递归快速排序
func QuickSort5(array []int) {
    // 人工栈
    helpStack := new(LinkStack)
    // 第一次初始化栈,推入下标0,len(array)-1,表示第一次对全数组范围切分
    helpStack.Push(len(array) - 1)
    helpStack.Push(0)
    // 栈非空证明存在未排序的部分
    for !helpStack.IsEmpty() {
        // 出栈,对begin-end范围进行切分排序
        begin := helpStack.Pop() // 范围区间左边
        end := helpStack.Pop()   // 范围
        // 进行切分
        loc := partition(array, begin, end)
        // 右边范围入栈
        if loc+1 < end {
            helpStack.Push(end)
            helpStack.Push(loc + 1)
        }
        // 左边返回入栈
        if begin < loc-1 {
            helpStack.Push(loc - 1)
            helpStack.Push(begin)
        }
    }
}

本来需要进行递归的数组范围 begin,end,不使用递归,依次推入自己的人工栈,然后循环对人工栈进行处理。我们可以看到没有递归,程序栈空间复杂度变为了:O(1),但额外的存储空间产生了。辅助人工栈结构 helpStack 占用了额外的空间,存储空间由原地排序的 O(1) 变成了 O(logn)~log(n)

我们可以参考上面的伪尾递归版本,继续优化非递归版本,先让短一点的范围入栈,这样存储复杂度可以变为:O(logn)。如:

// 非递归快速排序优化
func QuickSort6(array []int) {
    // 人工栈
    helpStack := new(LinkStack)
    // 第一次初始化栈,推入下标0,len(array)-1,表示第一次对全数组范围切分
    helpStack.Push(len(array) - 1)
    helpStack.Push(0)
    // 栈非空证明存在未排序的部分
    for !helpStack.IsEmpty() {
        // 出栈,对begin-end范围进行切分排序
        begin := helpStack.Pop() // 范围区间左边
        end := helpStack.Pop()   // 范围
        // 进行切分
        loc := partition(array, begin, end)
        // 切分后右边范围大小
        rSize := -1
        // 切分后左边范围大小
        lSize := -1
        // 右边范围入栈
        if loc+1 < end {
            rSize = end - (loc + 1)
        }
        // 左边返回入栈
        if begin < loc-1 {
            lSize = loc - 1 - begin
        }
        // 两个范围,让范围小的先入栈,减少人工栈空间
        if rSize != -1 && lSize != -1 {
            if lSize > rSize {
                helpStack.Push(end)
                helpStack.Push(loc + 1)
                helpStack.Push(loc - 1)
                helpStack.Push(begin)
            } else {
                helpStack.Push(loc - 1)
                helpStack.Push(begin)
                helpStack.Push(end)
                helpStack.Push(loc + 1)
            }
        } else {
            if rSize != -1 {
                helpStack.Push(end)
                helpStack.Push(loc + 1)
            }
            if lSize != -1 {
                helpStack.Push(loc - 1)
                helpStack.Push(begin)
            }
        }
    }
}

完整的程序如下:

package main
import (
    "fmt"
    "sync"
)
// 链表栈,后进先出
type LinkStack struct {
    root *LinkNode  // 链表起点
    size int        // 栈的元素数量
    lock sync.Mutex // 为了并发安全使用的锁
}
// 链表节点
type LinkNode struct {
    Next  *LinkNode
    Value int
}
// 入栈
func (stack *LinkStack) Push(v int) {
    stack.lock.Lock()
    defer stack.lock.Unlock()
    // 如果栈顶为空,那么增加节点
    if stack.root == nil {
        stack.root = new(LinkNode)
        stack.root.Value = v
    } else {
        // 否则新元素插入链表的头部
        // 原来的链表
        preNode := stack.root
        // 新节点
        newNode := new(LinkNode)
        newNode.Value = v
        // 原来的链表链接到新元素后面
        newNode.Next = preNode
        // 将新节点放在头部
        stack.root = newNode
    }
    // 栈中元素数量+1
    stack.size = stack.size + 1
}
// 出栈
func (stack *LinkStack) Pop() int {
    stack.lock.Lock()
    defer stack.lock.Unlock()
    // 栈中元素已空
    if stack.size == 0 {
        panic("empty")
    }
    // 顶部元素要出栈
    topNode := stack.root
    v := topNode.Value
    // 将顶部元素的后继链接链上
    stack.root = topNode.Next
    // 栈中元素数量-1
    stack.size = stack.size - 1
    return v
}
// 栈是否为空
func (stack *LinkStack) IsEmpty() bool {
    return stack.size == 0
}
// 非递归快速排序
func QuickSort5(array []int) {
    // 人工栈
    helpStack := new(LinkStack)
    // 第一次初始化栈,推入下标0,len(array)-1,表示第一次对全数组范围切分
    helpStack.Push(len(array) - 1)
    helpStack.Push(0)
    // 栈非空证明存在未排序的部分
    for !helpStack.IsEmpty() {
        // 出栈,对begin-end范围进行切分排序
        begin := helpStack.Pop() // 范围区间左边
        end := helpStack.Pop()   // 范围
        // 进行切分
        loc := partition(array, begin, end)
        // 右边范围入栈
        if loc+1 < end {
            helpStack.Push(end)
            helpStack.Push(loc + 1)
        }
        // 左边返回入栈
        if begin < loc-1 {
            helpStack.Push(loc - 1)
            helpStack.Push(begin)
        }
    }
}
// 非递归快速排序优化
func QuickSort6(array []int) {
    // 人工栈
    helpStack := new(LinkStack)
    // 第一次初始化栈,推入下标0,len(array)-1,表示第一次对全数组范围切分
    helpStack.Push(len(array) - 1)
    helpStack.Push(0)
    // 栈非空证明存在未排序的部分
    for !helpStack.IsEmpty() {
        // 出栈,对begin-end范围进行切分排序
        begin := helpStack.Pop() // 范围区间左边
        end := helpStack.Pop()   // 范围
        // 进行切分
        loc := partition(array, begin, end)
        // 切分后右边范围大小
        rSize := -1
        // 切分后左边范围大小
        lSize := -1
        // 右边范围入栈
        if loc+1 < end {
            rSize = end - (loc + 1)
        }
        // 左边返回入栈
        if begin < loc-1 {
            lSize = loc - 1 - begin
        }
        // 两个范围,让范围小的先入栈,减少人工栈空间
        if rSize != -1 && lSize != -1 {
            if lSize > rSize {
                helpStack.Push(end)
                helpStack.Push(loc + 1)
                helpStack.Push(loc - 1)
                helpStack.Push(begin)
            } else {
                helpStack.Push(loc - 1)
                helpStack.Push(begin)
                helpStack.Push(end)
                helpStack.Push(loc + 1)
            }
        } else {
            if rSize != -1 {
                helpStack.Push(end)
                helpStack.Push(loc + 1)
            }
            if lSize != -1 {
                helpStack.Push(loc - 1)
                helpStack.Push(begin)
            }
        }
    }
}
// 切分函数,并返回切分元素的下标
func partition(array []int, begin, end int) int {
    i := begin + 1 // 将array[begin]作为基准数,因此从array[begin+1]开始与基准数比较!
    j := end       // array[end]是数组的最后一位
    // 没重合之前
    for i < j {
        if array[i] > array[begin] {
            array[i], array[j] = array[j], array[i] // 交换
            j--
        } else {
            i++
        }
    }
    /* 跳出while循环后,i = j。
     * 此时数组被分割成两个部分  -->  array[begin+1] ~ array[i-1] < array[begin]
     *                        -->  array[i+1] ~ array[end] > array[begin]
     * 这个时候将数组array分成两个部分,再将array[i]与array[begin]进行比较,决定array[i]的位置。
     * 最后将array[i]与array[begin]交换,进行两个分割部分的排序!以此类推,直到最后i = j不满足条件就退出!
     */
    if array[i] >= array[begin] { // 这里必须要取等“>=”,否则数组元素由相同的值组成时,会出现错误!
        i--
    }
    array[begin], array[i] = array[i], array[begin]
    return i
}
func main() {
    list3 := []int{5, 9, 1, 6, 8, 14, 6, 49, 25, 4, 6, 3}
    QuickSort5(list3)
    fmt.Println(list3)
    list4 := []int{5, 9, 1, 6, 8, 14, 6, 49, 25, 4, 6, 3}
    QuickSort6(list4)
    fmt.Println(list4)
}

输出:

[1 3 4 5 6 6 6 8 9 14 25 49]
[1 3 4 5 6 6 6 8 9 14 25 49]

使用人工栈替代递归的程序栈,换汤不换药,速度并没有什么变化,但是代码可读性降低。

五、补充:内置库使用快速排序的原因

首先堆排序,归并排序最好最坏时间复杂度都是:O(nlogn),而快速排序最坏的时间复杂度是:O(n^2),但是很多编程语言内置的排序算法使用的仍然是快速排序,这是为什么?

  1. 这个问题有偏颇,选择排序算法要看具体的场景,Linux 内核用的排序算法就是堆排序,而 Java 对于数量比较多的复杂对象排序,内置排序使用的是归并排序,只是一般情况下,快速排序更快。
  2. 归并排序有两个稳定,第一个稳定是排序前后相同的元素位置不变,第二个稳定是,每次都是很平均地进行排序,读取数据也是顺序读取,能够利用存储器缓存的特征,比如从磁盘读取数据进行排序。因为排序过程需要占用额外的辅助数组空间,所以这部分有代价损耗,但是原地手摇的归并排序克服了这个缺陷。
  3. 复杂度中,大 O 有一个常数项被省略了,堆排序每次取最大的值之后,都需要进行节点翻转,重新恢复堆的特征,做了大量无用功,常数项比快速排序大,大部分情况下比快速排序慢很多。但是堆排序时间较稳定,不会出现快排最坏 O(n^2) 的情况,且省空间,不需要额外的存储空间和栈空间。
  4. 当待排序数量大于16000个元素时,使用自底向上的堆排序比快速排序还快,可见此:https://core.ac.uk/download/pdf/82350265.pdf
  5. 快速排序最坏情况下复杂度高,主要在于切分不像归并排序一样平均,而是很依赖基准数的现在,我们通过改进,比如随机数,三切分等,这种最坏情况的概率极大的降低。大多数情况下,它并不会那么地坏,大多数快才是真的块。
  6. 归并排序和快速排序都是分治法,排序的数据都是相邻的,而堆排序比较的数可能跨越很大的范围,导致局部性命中率降低,不能利用现代存储器缓存的特征,加载数据过程会损失性能。

对稳定性有要求的,要求排序前后相同元素位置不变,可以使用归并排序,Java 中的复杂对象类型,要求排序前后位置不能发生变化,所以小规模数据下使用了直接插入排序,大规模数据下使用了归并排序。

对栈,存储空间有要求的可以使用堆排序,比如 Linux 内核栈小,快速排序占用程序栈太大了,使用快速排序可能栈溢出,所以使用了堆排序。

Golang 中,标准库 sort 中对切片进行稳定排序:

func SliceStable(slice interface{}, less func(i, j int) bool) {
    rv := reflectValueOf(slice)
    swap := reflectSwapper(slice)
    stable_func(lessSwap{less, swap}, rv.Len())
}
func stable_func(data lessSwap, n int) {
    blockSize := 20
    a, b := 0, blockSize
    for b <= n {
        insertionSort_func(data, a, b)
        a = b
        b += blockSize
    }
    insertionSort_func(data, a, n)
    for blockSize < n {
        a, b = 0, 2*blockSize
        for b <= n {
            symMerge_func(data, a, a+blockSize, b)
            a = b
            b += 2 * blockSize
        }
        if m := a + blockSize; m < n {
            symMerge_func(data, a, m, n)
        }
        blockSize *= 2
    }
}

会先按照 20 个元素的范围,对整个切片分段进行插入排序,因为小数组插入排序效率高,然后再对这些已排好序的小数组进行归并排序。其中归并排序还使用了原地排序,节约了辅助空间。而一般的排序:

func Slice(slice interface{}, less func(i, j int) bool) {
    rv := reflectValueOf(slice)
    swap := reflectSwapper(slice)
    length := rv.Len()
    quickSort_func(lessSwap{less, swap}, 0, length, maxDepth(length))
}
func quickSort_func(data lessSwap, a, b, maxDepth int) {
    for b-a > 12 {
        if maxDepth == 0 {
            heapSort_func(data, a, b)
            return
        }
        maxDepth--
        mlo, mhi := doPivot_func(data, a, b)
        if mlo-a < b-mhi {
            quickSort_func(data, a, mlo, maxDepth)
            a = mhi
        } else {
            quickSort_func(data, mhi, b, maxDepth)
            b = mlo
        }
    }
    if b-a > 1 {
        for i := a + 6; i < b; i++ {
            if data.Less(i, i-6) {
                data.Swap(i, i-6)
            }
        }
        insertionSort_func(data, a, b)
    }
}
func doPivot_func(data lessSwap, lo, hi int) (midlo, midhi int) {
    m := int(uint(lo+hi) >> 1)
    if hi-lo > 40 {
        s := (hi - lo) / 8
        medianOfThree_func(data, lo, lo+s, lo+2*s)
        medianOfThree_func(data, m, m-s, m+s)
        medianOfThree_func(data, hi-1, hi-1-s, hi-1-2*s)
    }
    medianOfThree_func(data, lo, m, hi-1)
    pivot := lo
    a, c := lo+1, hi-1
    for ; a < c && data.Less(a, pivot); a++ {
    }
    b := a
    for {
        for ; b < c && !data.Less(pivot, b); b++ {
        }
        for ; b < c && data.Less(pivot, c-1); c-- {
        }
        if b >= c {
            break
        }
        data.Swap(b, c-1)
        b++
        c--
    }
    protect := hi-c < 5
    if !protect && hi-c < (hi-lo)/4 {
        dups := 0
        if !data.Less(pivot, hi-1) {
            data.Swap(c, hi-1)
            c++
            dups++
        }
        if !data.Less(b-1, pivot) {
            b--
            dups++
        }
        if !data.Less(m, pivot) {
            data.Swap(m, b-1)
            b--
            dups++
        }
        protect = dups > 1
    }
    if protect {
        for {
            for ; a < b && !data.Less(b-1, pivot); b-- {
            }
            for ; a < b && data.Less(a, pivot); a++ {
            }
            if a >= b {
                break
            }
            data.Swap(a, b-1)
            a++
            b--
        }
    }
    data.Swap(pivot, b-1)
    return b - 1, c
}

快速排序限制程序栈的层数为: 2*ceil(log(n+1)),当递归超过该层时表示程序栈过深,那么转为堆排序。

上述快速排序还使用了三种优化,第一种是递归时小数组转为插入排序,第二种是使用了中位数基准数,第三种使用了三切分。