11. 算法复杂度主方法

有时候,我们要评估一个算法的复杂度,但是算法被分散为几个递归的子问题,这样评估起来很难,有一个数学公式可以很快地评估出来。

一、复杂度主方法

主方法,也可以叫主定理。对于那些用分治法,有递推关系式的算法,可以很快求出其复杂度。定义如下:

master_method

如果对证明感兴趣的可以翻阅书籍:《算法导论》。如果觉得太难思考,可以跳过该节。由于主定理的公式十分复杂,所以这里有一种比较简化的版本来计算:

二、举例

  1. 二分搜索,每次问题规模减半,只查一个数,递推过程之外的查找复杂度为 O(1),递推运算时间公式为:T(n) = T(n/2) + O(1)
  2. 快速排序,每次随机选一个数字作为划分进行排序,每次问题规模减半,递推过程之外的排序复杂度为 O(n),递推运算时间递推公式为:T(n) = 2T(n/2) + O(n)

按照简化版的主定理,可以知道:

  • 二分查找:a = 1,b = 2,d = 0,可以知道 a = b^d,所以二分查找的时间复杂度为:O(logn)
  • 快速排序:a = 2,b = 2,d = 1,可以知道 a = b^d,所以快速排序的时间复杂度为:O(nlogn)

强调:并非所有递推关系式都可应用主定理,但是大部分情况下都可以。

因为需要较多的数学知识,所以我们只简单介绍到这里。

下一节:在计算机科学中,有一个专门的分支研究问题的可计算性,叫做计算理论。我们用计算机算法来解决一个问题,如果一个问题被证明很难计算,或者只能暴力枚举来解决,那么我们就不必花大力气去质疑使用的算法是不是错了,为什么这么慢,计算怎么久都没出结果,到底有没有更好的算法。